Algebraic Number Theory

Exercise sheet 1

Solutions should be submitted online before 27.04.20 via the Moodle page of the course: https://moodle.hu-berlin.de/course/view.php?id=95156

Exercise 1.1. (3 points) Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain. Is this true for $\mathbb{Z}[\sqrt{-3}]$?

Exercise 1.2. (3 points) For arbitrary $n \in \mathbb{Z}$, determine the conditions under which n can be represented as the sum of two squares.

Exercise 1.3. (3 points) Find all integral solutions of the equation $X^2 + Y^2 = Z^2$.

Exercise 1.4. (3 points) Let K be a field and $A \subset K^{\times}$ a finite subgroup. Prove that A is cyclic. Deduce that \mathbb{F}_q^{\times} is cyclic, where \mathbb{F}_q is a finite field.

Exercise 1.5. (2 + 2 points)

- 1. Let $\mu_n \subset \mathbb{C}^{\times}$ be the group of *n*-th roots of unity, i.e. the group of all $x \in \mathbb{C}^{\times}$ such that $x^n = 1$. The generators of μ_n are called *primitive n*-th roots of unity. How many primitive *n*-th roots of unity are there?
- 2. Let $\omega \in \mu_n$ be a primitive *n*-th root of unity. Prove that $\mathbb{Q}(\omega)$ is a Galois extension of \mathbb{Q} and that $\mathrm{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})$ is abelian.