Dr. Andrey Soldatenkov Jan Hesmert

Algebraic Number Theory

Exercise sheet 11

Solutions should be submitted online before 6.07.20 via the Moodle page of the course: https://moodle.hu-berlin.de/course/view.php?id=95156

Exercise 11.1. (3 + 3 points) Let $K = \mathbb{Q}(\mu)$, where μ is a primitive *n*-th root of unity for arbitrary *n*. Let $F \in \mathbb{Z}[X]$ be the monic minimal polynomial of μ .

- 1. Let $X^n 1 = F(X)G(X)$ for some $G \in \mathbb{Z}[X]$. Taking derivatives of both sides, deduce that $N_{K/\mathbb{Q}}(F'(\mu))$ divides some power of n.
- 2. Deduce that the prime factors of d_K are among the prime factors of n. Conclude that if p ramifies in K, it divides n.

Exercise 11.2. (3 points) Let $K = \mathbb{Q}(\mu)$ for μ a primitive p-th root of unity, where p > 2 is prime. Recall that $\operatorname{Gal}(K/\mathbb{Q}) \simeq \mathbb{F}_p^{\times}$. Consider the index 2 subgroup $(\mathbb{F}_p^{\times})^2 \subset \mathbb{F}_p^{\times}$ and the corresponding quadratic field $F \subset K$. Identify this quadratic field (i.e. find $d \in \mathbb{Z}$, such that $F \simeq \mathbb{Q}(\sqrt{d})$).

Exercise 11.3. (5 points) Consider the group $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$. Is this group is always cyclic? Prove that there exists a natural homomorphism $(\mathbb{Z}/p^k\mathbb{Z})^{\times} \to (\mathbb{Z}/p^{k-1}\mathbb{Z})^{\times}$, and that it is surjective. Prove that it induces an isomorphism of prime-to-p parts $\mathbb{Z}/(p-1)\mathbb{Z}$ of both groups and eventually identifies those parts with \mathbb{F}_p^{\times} . Using this, construct a splitting of the group surjection $\mathbb{Z}_p^{\times} \to \mathbb{F}_p^{\times}$, where \mathbb{Z}_p are p-adic integers.