Dr. Andrey Soldatenkov Jan Hesmert

Algebraic Number Theory

Exercise sheet 8

Solutions should be submitted online before 15.06.20 via the Moodle page of the course: https://moodle.hu-berlin.de/course/view.php?id=95156

Exercise 8.1. (2+2 points) Find the fundamental units for the following real quadratic fields:

- 1. $\mathbb{Q}(\sqrt{10})$
- $2. \mathbb{Q}(\sqrt{13})$

Exercise 8.2. (3 + 3 points) Let $K = \mathbb{Q}(\sqrt{d})$ with d > 0. Consider the Pell's equation $a^2 - db^2 = \pm 1$.

At the lecture we have considered the case $d \equiv 2, 3 \pmod{4}$. Assume now that $d \equiv 1 \pmod{4}$, so that $\mathfrak{o}_K = \mathbb{Z}[(1+\sqrt{d})/2]$.

- 1. Prove that solutions to Pell's equation correspond to the elements of $\mathfrak{o}_K^{\times} \cap \mathbb{Z}[\sqrt{d}]$.
- 2. Write $u = (a_1 + b_1 \sqrt{d})/2$ for the fundamental unit, where $a_1, b_1 \ge 1$ are of the same parity. Prove that $u^3 \in \mathbb{Z}[\sqrt{d}]$. Deduce that Pell's equation always has infinitely many solutions.

Exercise 8.3. (5 points) Let $K = \mathbb{Q}(\sqrt{d})$, where d is a square-free integer. Determine all prime numbers that ramify in \mathfrak{o}_K .