Exercises, Algebra I (Commutative Algebra) – Week 13

Exercise 68.

- i) Consider as usual a ring A as a module over itself. Prove that A is Artinian if and only if it admits a finite composition series.
- ii) Prove that a ring A is Artinian if and only if it is Noetherian and dim A = 0. Use this to show that for a Noetherian ring A and a maximal ideal $\mathfrak{m} \subset A$ every quotient ring A/\mathfrak{m}^k is Artinian.

Exercise 69.

Consider the local ring (A, \mathfrak{m}) which is obtained as the localization of the ring $k[x,y]/(x^2-y^3)$ (the cusp) resp. $k[x,y]/(y^2-x^2(x+1))$ (the node) in the maximal ideal (x,y). Determine in each case an \mathfrak{m} -primary principal ideal.

Exercise 70.

Let X be a topological space. Consider a chain $\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n \subseteq X$ of irreducible closed subsets of X. The integer n is called the length of the chain, and the (Krull) dimension of X, denoted dim X, is the supremum of lengths of all such chains. Show that dim(A) = dim Spec(A) and ht(p) + dim $V(p) \leq \dim(A)$.

Exercise 71.

A polynomial $P \in \mathbb{Q}[T]$ is called *numerical* if $P(n) \in \mathbb{Z}$ for all $n \gg 0$. Prove the following assertions:

i) If $P \in \mathbb{Q}[T]$ is a numerical polynomial of degree r, then there exist $c_0, \ldots, c_r \in \mathbb{Z}$ such that

$$P(T) = c_0 \binom{T}{r} + c_1 \binom{T}{r-1} + \ldots + c_r,$$

where $\binom{T}{k} = \frac{T(T-1)...(T-k+1)}{k!}$.

ii) Assume $f: \mathbb{Z} \to \mathbb{Z}$ is such that the induced difference function

$$\Delta f \colon \mathbb{Z} \to \mathbb{Z}, \ n \mapsto f(n+1) - f(n)$$

is polynomial-like, i.e. there exists a (numerical) polynomial $Q \in \mathbb{Q}[T]$ with $\Delta f(n) = Q(n)$ for $n \gg 0$. Show that then also f is polynomial-like, i.e. there exists a (numerical) polynomial $P \in \mathbb{Q}[T]$ with f(n) = P(n) for $n \gg 0$. Moreover, $\deg P(T) = \deg Q(T) + 1$.

Please turn over

Exams:

first date - 29/07/2015, 9-11, Wolfgang-Paul-Hörsaal, Kreuzbergweg 28; second date - 26/09/2015, 9-11, Großer Hörsaal, Wegelerstraße 10.