Exercises, Algebra I (Commutative Algebra) – Week 8

Exercise 42. (2 points)

Let A be a subring of B such that B is integral over A. Show that every ring homomorphism $f \colon A \to K$ with K an algebraically closed field can be extended to a ring homomorphism $\tilde{f} \colon B \to K$.

Exercise 43. (2 points)

Let A be a subring of B and assume that $S := B \setminus A$ is closed under multiplication. Show that then A is integrally closed in B.

Exercise 44. (4 points)

- i) Show that the \mathbb{C} -algebra homomorphism $A := \mathbb{C}[X,Y]/(X^3 Y^2) \to \mathbb{C}[T], X \mapsto T^2, Y \mapsto T^3$ induces a bijection $\mathbb{A}^1_{\mathbb{C}} = \operatorname{Spec}(\mathbb{C}[T]) \to \operatorname{Spec}(A)$, but that there does not exist a \mathbb{C} -algebra homomorphism $\mathbb{C}[T] \to A$ that would induce a bijection $\operatorname{Spec}(A) \to \mathbb{A}^1_{\mathbb{C}}$
- ii) Discuss in a similar way $A := \mathbb{Z}[x]/(x^2+4) \to \mathbb{Z}[i], x \mapsto 2i$.

Exercise 45. (4 points)

Let A be a ring and G a finite group of ring automorphisms $g: A \xrightarrow{\sim} A$.

- i) Show that A is integral over the ring of G-invariants $A^G := \{a \in A \mid g(a) = a \text{ for all } g \in G\}.$
- ii) Let $\mathfrak{p} \subset A^G$ be a prime ideal. Prove that G acts transitively on the set of those prime ideals $\mathfrak{q} \subset A$ for which $\mathfrak{q} \cap A^G = \mathfrak{p}$.

Exercise 46. (3 points)

Let A be a normal ring and let K be its quotient field. Show that for a finite Galois extenions L/K the integral closure \bar{A} of A in L is invariant under $G := \operatorname{Gal}(L/K)$, i.e. for all $g \in G$ one has $g(\bar{A}) = \bar{A}$, and that $\bar{A}^G = A$.

Exercise 47. (4 points)

Consider the ring $A := k[x,y]/(x^2 + y^2 - 1)$. Show that it is factorial for $k = \mathbb{C}$ and not factorial for $k = \mathbb{R}$. (Observe that in the two cases A is isomorphic to the ring of functions $\mathbb{C}[e^{it},e^{-it}]$ resp. $\mathbb{R}[\sin(t),\cos(t)]$.)

Due Monday Jun 8.

Information from the student council: The student council of mathematics will organize the math party on 11/06 in N8schicht. The presale will be held on Mon 8/06, Tue 9/06 and Wed 10/06 in front of mensa Poppelsdorf. Further information can be found at www.fsmath.uni-bonn.de