Exercises, Algebraic Geometry I – Week 3

Exercise 12. (4 points) Direct and inverse image are adjoint.

Let $f: X \to Y$ be a continuous map. Show that $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ is right adjoint to $f^{-1}: \operatorname{Sh}(Y) \to \operatorname{Sh}(X)$ (one writes $f^{-1} \dashv f_*$), i.e. for all $\mathcal{F} \in \operatorname{Sh}(X)$ and $\mathcal{G} \in \operatorname{Sh}(Y)$, there exists an isomorphism

$$\operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathcal{G},f_*\mathcal{F})$$

which is functorial in \mathcal{F} and \mathcal{G} . Show that in particular there exist natural homomorphisms

$$\mathcal{G} \to f_* f^{-1} \mathcal{G}$$
 and $f^{-1} f_* \mathcal{F} \to \mathcal{F}$.

Verify also that for the composition of two continuous maps $f: X \to Y$ and $g: Y \to Z$ one has $(g \circ f)_* = g_* \circ f_*$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Exercise 13. (2 points) Local rings of continuous functions.

Let X be a topological space and let \mathcal{C} be the sheaf of continuous functions on X. Consider for a point $x \in X$ the stalk \mathcal{C}_x . Show that $\mathcal{C}_x \to \mathbb{R}$, $f \mapsto f(x)$ is a well defined map and that \mathcal{C}_x is a local ring with maximal ideal $\mathfrak{m}_x := \{f \in \mathcal{C}_x \mid f(x) = 0\}$. Describe similar situations involving differentiable or holomorphic functions.

Exercise 14. (3 points) Direct image is left exact.

Let $f: X \to Y$ be a continuous map. Prove that $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ is left exact. Give two different proofs: first using only the definition of f_* , and second using the fact that f_* is right adjoint (see exercise 12).

Exercise 15. (4 points) Direct sum and sheaf Hom.

Let \mathcal{F} , \mathcal{G} be two sheaves of abelian groups on a topological space X

- i) Show that $\mathcal{F} \oplus \mathcal{G} \colon U \mapsto \mathcal{F}(U) \oplus \mathcal{G}(U)$ defines a sheaf. As an example, let $\mathcal{F} = \mathcal{G}$ be the sheaf of continuous functions with values in \mathbb{R} . Observe that $\mathcal{F} \oplus \mathcal{G}$ is the sheaf of continuous functions with values in \mathbb{R}^2 .
- ii) For any open set $U \subset X$ the set of morphisms $\operatorname{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)$ is an abelian group. Show that

$$U \mapsto \operatorname{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)$$

defines a sheaf of abelian groups on X. It will be denoted $\mathcal{H}om(\mathcal{F},\mathcal{G})$.

Exercise 16. (4 points) Gluing of sheaves.

Let X be a topological space and let $X = \bigcup U_i$ be an open covering. We use the shorthand $U_{ij} = U_i \cap U_j$ and $U_{ijk} = U_i \cap U_j \cap U_k$.

Consider sheaves \mathcal{F}_i on U_i and gluings $\varphi_{ij}: \mathcal{F}_i|_{U_{ij}} \xrightarrow{\sim} \mathcal{F}_j|_{U_{ij}}$, where $\varphi_{ii} = \operatorname{id}$ for any i. Show that if the cocycle condition $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on U_{ijk} is satisified, then there exists a sheaf \mathcal{F} on X together with isomorphisms $\varphi_i: \mathcal{F}|_{U_i} \cong \mathcal{F}_i$ such that $\varphi_{ij} \circ \varphi_i = \varphi_j$ on U_{ij} . The (\mathcal{F}, φ_i) is unique up to unique isomorphism.

Continued on next page.

The last exercise is not necessary for the understanding of the lectures at this point.

Exercise 17. (4 extra points) Functor of points and the Yoneda lemma Let \mathcal{C} be a category¹ with sets of morphisms between two objects X, Y denoted Hom(X, Y). Then every object X in \mathcal{C} induces a functor

$$h_X: \mathcal{C}^{\mathrm{op}} \to (Sets), Y \mapsto \mathrm{Hom}(Y, X).$$

Observe that $h_X(X)$ contains a distinguished element.

- i) Consider the three categories $\mathcal{C} := (Top)$ (of topological spaces); $\mathcal{C} := (Ab)$ (of abelian groups); $\mathcal{C} := (Rings)$ (of rings with unit) and denote for each object X in \mathcal{C} by |X| the underlying set. Show that in all three cases there exists an object Z in \mathcal{C} such that |X| can be recovered as $|X| = h_X(Z)$.
- ii) Consider the category of affine schemes $\mathcal{C} := (AffSch)$. Does there exist an object as in i) in this case?
- iii) For an arbitrary category C, denote by $\operatorname{Fun}(C^{\operatorname{op}},(Sets))$ the category of functors $C^{\operatorname{op}} \to (Sets)$ and view $X \mapsto h_X$ as a functor

$$h: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, (Sets)).$$

The Yoneda lemma then asserts that h is a fully faithful embedding, in other words h defines an equivalence of categories between \mathcal{C} and a full subcategory of $\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},(Sets))$. Spell out what this means and try to prove it. Check Vakil's notes on the subject (or any other source). Objects in the image of h (or, more precisely, objects isomorphic to objects in the image) are called representable functors.

¹All set theoretic issues (e.g. whether the category is small or not) will be ignored