Exercises, Algebraic Geometry I – Week 4

Exercise 18. (2 points) Universality of δ -functors.

Let $(H^i): \mathcal{A} \to \mathcal{B}$ be a δ -functor. Show that if H^1 is erasable and $(\tilde{H}^i): \mathcal{A} \to \mathcal{B}$ is another δ -functor with a natural transformation $H^0 \to \tilde{H}^0$, then for any object $A \in \mathcal{A}$ there exists a natural map $H^1(A) \to \tilde{H}^1(A)$. (This is the key step towards the proof of Grothendieck's theorem that δ -functors with erasable H^i , i > 0, are universal.)

Exercise 19. (2 points) Flasque resolutions.

Let \mathcal{F} be a sheaf on X and consider $\mathcal{F}_0: U \mapsto \{s: U \to \coprod \mathcal{F}_x \mid s(x) \in \mathcal{F}_x\}$. Show that \mathcal{F}_0 is a flasque sheaf and deduce from this that every sheaf \mathcal{F} admits a flasque resolution $0 \to \mathcal{F} \to \mathcal{F}_0 \to \mathcal{F}_1 \to \dots$

Exercise 20. (4 points) Cohomology of the circle.

Let S^1 be the circle with the usual topology. Let \mathcal{C} be the sheaf of continuous real functions on S^1 . Prove that

$$H^1(S^1, \underline{\mathbb{Z}}) = \mathbb{Z}$$
 and $H^1(S^1, \mathcal{C}) = 0$.

Exercise 21. (2 points) Morphism of locally ringed spaces.

Let A be a local integral domain which is not a field. The natural inclusion $A \hookrightarrow Q(A)$ is not local but $(\operatorname{Spec}(Q(A)), \mathcal{O}) \to (\operatorname{Spec}(A), \mathcal{O})$ is a morphism of locally ringed spaces. Is this a contradiction?

Exercise 22. (2 points) Direct image under point inclusion.

Let $x \in X$ be an arbitrary point of a topological space. Is the direct image $i_{x*} : Sh(\{x\}) \to Sh(X)$ associated with the inclusion $i_x : \{x\} \to X$ exact?

Exercise 23. (3 points) Rational points.

Let (X, \mathcal{O}_X) be an affine scheme and let $x \in X$ with residue field $k(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$.

- i) Show that for a field K to give a morphism of affine schemes $(\operatorname{Spec}(K), \mathcal{O}) \to (X, \mathcal{O}_X)$ with image x is equivalent to give a field inclusion $k(x) \hookrightarrow K$.
- ii) If (X, \mathcal{O}_X) is an affine k-scheme for some field k, i.e. a morphism of schemes

$$(X, \mathcal{O}_X) \to (\operatorname{Spec}(k), \mathcal{O})$$

is fixed, show that every residue field k(x) is naturally a field extension $k \subset k(x)$. A point $x \in X$ is *rational* if this extension is bijective, i.e. k = k(x). The *set of rational points* is denoted by X(k). Show using i) that this set can also be described as the set of k-morphisms (Spec(k), \mathcal{O}) $\to (X, \mathcal{O}_X)$, i.e. morphisms such that the composition

$$(\operatorname{Spec}(k), \mathcal{O}) \to (X, \mathcal{O}_X) \to (\operatorname{Spec}(k), \mathcal{O})$$

is the identity.

Please turn over.

Exercise 24. (3 points) Zariski tangent space.

Let (X, \mathcal{O}_X) be an affine scheme. For a point $x \in X$ the quotient $\mathfrak{m}_x/\mathfrak{m}_x^2$ is considered as a vector space over the residue field $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$. The Zariski tangent space T_x of X at $x \in X$ is defined as the dual of this vector space, i.e.

$$T_x = (\mathfrak{m}_x/\mathfrak{m}_x^2)^* = \operatorname{Hom}_{k(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2, k(x)).$$

Assume (X, \mathcal{O}_X) is an affine k-scheme (see previous exercise) and denote the ring of dual numbers $k[T]/(T^2)$ by $k[\varepsilon]$.

Show that to give a morphism $(\operatorname{Spec}(k[\varepsilon]), \mathcal{O}_{\operatorname{Spec}(k[\varepsilon])}) \to (X, \mathcal{O}_X)$ that commutes with the morphisms to $(\operatorname{Spec}(k), \mathcal{O})$ is equivalent to give a rational point $x \in X$ (see previous exercise) and an element $v \in T_x$.