Dr. Andrey Soldatenkov

Exercises, Algebraic Geometry II – Week 13

Exercise 56. (2 points) Projection formula.

Let $f: X \to Y$ be a morphism and $\mathcal{F} \in \operatorname{Qcoh}(X)$. Show that for a locally free $\mathcal{G} \in \operatorname{Coh}(Y)$ one has

$$R^i f_*(\mathcal{F} \otimes f^* \mathcal{G}) \cong R^i f_*(\mathcal{F}) \otimes \mathcal{G}.$$

Exercise 57. (4 points) Künneth formula.

Let X_1 and X_2 be separated schemes over a field k. One writes $\mathcal{F}_1 \boxtimes \mathcal{F}_2$ for $p_1^* \mathcal{F}_1 \otimes p_2^* \mathcal{F}_2$ for quasi-coherent sheaves \mathcal{F}_1 on X_1 and \mathcal{F}_2 on X_2 .

1. Show that

$$H^n(X_1 \times_k X_2, \mathcal{F}_1 \boxtimes \mathcal{F}_2) \cong \bigoplus_{i+j=n} H^i(X_1, \mathcal{F}_1) \otimes_k H^j(X_2, \mathcal{F}_2).$$

2. Prove that $R^n p_{1*}(\mathcal{F}_1 \boxtimes \mathcal{F}_2) \cong \mathcal{F}_1 \otimes_k H^n(X_2, \mathcal{F}_2)$. Compare this with the assumptions on the previous exercise.

Exercise 58. (2 points) Hodge numbers of products.

For a smooth projective variety X over a field k one defines $h^{p,q}(X) := \dim_k H^q(X, \Omega^p_{X/k})$. Compute the Hodge numbers $h^{p,q}(X_1 \times_k X_2)$ of a product of two smooth projective varieties X_1, X_2 .

Exercise 59. (3 points) Hodge bundles.

Let $f: X \to Y$ be a smooth projective morphism with Y Noetherian and dim $X = \dim Y + 1$. Show that the Hodge bundles $R^q f_*(\Omega^p_{X/Y})$ are locally free sheaves. (In characteristic zero, this holds true without the assumption on the dimension.)

Exercise 60. (3 points)

Let $f: X \to Y$ be a projective morphism with Y Noetherian integral of positive dimension. Let $\mathcal{F} \in \operatorname{Coh}(X)$ be flat over Y and such that there exists at most one $y \in Y$ with $H^0(X_y, \mathcal{F}_y) \neq 0$. Show that then $f_*\mathcal{F} = 0$. (Convince yourself that the flatness of \mathcal{F} is really needed for this.)

Exercise 61. (2 points)

Let Y be a Noetherian scheme and \mathcal{E} a locally free sheaf of rank n+1 on Y. Let $\pi: X = \mathbb{P}(\mathcal{E}) \to Y$ and $\mathcal{O}(1)$ be the corresponding invertible sheaf on X. Denote by $\omega_{X/Y}$ the relative canonical sheaf. Using the isomorphism $R^n \pi_* \omega_{X/Y} \simeq \mathcal{O}_Y$ (which one can deduce from Serre duality) and the relative Euler sequence (see exercises 11 and 34) prove that for any $l \in \mathbb{Z}$ we have $R^n \pi_* (\mathcal{O}(l)) \simeq \pi_* (\mathcal{O}(-l-n-1))^{\vee} \otimes (\Lambda^{n+1} \mathcal{E})^{\vee}$.

Due Monday 18 July, 2016.

Attention: no lecture on Thursday 14.07.2016. Next lecture on Monday 18.07.2016 Exams:

- 02.08.2016, 9.00 11.00, Großer Hörsaal, Wegelerstr. 10;
- 28.09.2016, 9.00 11.00, Großer Hörsaal, Wegelerstr. 10.