Preparing the exam: basic questions

- 1. Find examples of morphisms which are smooth but not unramified; unramified but not étale; flat but not smooth.
- 2. Let $f: X \to Y$ be a smooth projective morphism, Y Noetherian scheme. Consider the Stein factorization $f = g \circ h$, $h: X \to Y'$, $g: Y' \to Y$. Is g étale?
- 3. Let A=k[x,y,z]/(xy,yz,zx), $\mathfrak{m}=(x,y,z)$, and B=k[x,y]/(xy(x-y)), $\mathfrak{n}=(x,y)$. Is it true that $\hat{A}_{\mathfrak{m}}=\hat{B}_{\mathfrak{n}}$?
- 4. Let $C \simeq \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ be a line. Then $T_{\mathbb{P}^3}|_C \simeq \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)$. Find a, b, c.
- 5. Find an example of a surjective proper morphism $f: X \to Y$ such that $f_*\mathcal{O}_X$ has non-zero torsion.
- 6. Let X,Y,Z be integral schemes, $f\colon X\to Y,\,g\colon Y\to Z$ two morphisms, f and $g\circ f$ flat. Is g also flat?
- 7. Find an example of a non-smooth morphism between varieties with all fibres smooth.
- 8. Consider the rational map $\mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, $[x:y:z] \mapsto [yz:xz:xy]$. Find the maximal open subset where this map is defined. Describe the exceptional locus.
- 9. Let A be a Noetherian ring and $\mathfrak{m} \subset A$ a maximal ideal. Is the \mathfrak{m} -adic completion \hat{A} a local ring?
- 10. Let $X = \operatorname{Spec}(k[x,y,z,w]/(xy-zw)), Y = \operatorname{Spec}(k[x,y,z,w]/(x,z)) \subset X$. What is the exceptional locus of the blow-up morphism $\operatorname{Bl}_Y X \to X$?
- 11. Let k be a field and $A = k[\varepsilon]/(\varepsilon^2)$ the "ring of dual numbers". A finite A-module is a finite-dimensional k-vector space V with an endomorphism $E \in \operatorname{End}(V)$, such that $E^2 = 0$. What are the conditions for (V, E) to be a flat A-module?
- 12. Does there exist a double covering of \mathbb{P}^1 ramified in 3 points?
- 13. What are the Hodge numbers of the hypersurface in \mathbb{P}^3 given by xy zw = 0?
- 14. Let X be a smooth variety and $Y \subset X$ a smooth subvariety. For the blow-up $\pi \colon \tilde{X} = \mathrm{Bl}_Y X \to X$ compute $R^i \pi_* \mathcal{O}_{\tilde{X}}$ for $i \geq 0$.
- 15. Let E be a locally free sheaf on a scheme X and L an invertible sheaf. Is it true that $\mathbb{P}(E) \simeq \mathbb{P}(E \otimes L)$?
- 16. Let X be the hypersurface in \mathbb{P}^3_k (k algebraically closed) given by xy zw = 0. Let $p = [1:0:0:0] \in X$ and $\tilde{X} = \mathrm{Bl}_p X$. Let $\pi \colon \tilde{X} \to \mathbb{P}^2$ be the projection to a hyperplane in \mathbb{P}^3 . Describe the fibres of π .
- 17. Given an integer $d \geq 2$ find an example of a normal two-dimensional local ring (A, \mathfrak{m}) , such that $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = d$, where $k = A/\mathfrak{m}$.
- 18. Let X_1 , X_2 be two smooth projective varieties over a field k. Is it true that $\text{Pic}(X_1 \times_k X_2) \simeq \text{Pic}(X_1) \times \text{Pic}(X_2)$?
- 19. Let C be a smooth curve of positive genus, E a locally free sheaf of rank two on C. Can there exist a dominant rational map $\mathbb{P}^n \dashrightarrow \mathbb{P}(E)$ for some n?
- 20. Find an example of a subvariety in \mathbb{P}^n that is not a local complete intersection.
- 21. Find an example of two normal varieties X, Y and a morphism $f: X \to Y$ that is finite but not flat.

Exams:

- 02.08.2016, 9.00 11.00, Großer Hörsaal, Wegelerstr. 10;
- 28.09.2016, 9.00 11.00, Großer Hörsaal, Wegelerstr. 10.