Dr. Andrey Soldatenkov

Exercises, Algebraic Geometry II – Week 9

Exercise 40. (3 points) Associated graded rings.

Let A be a Noetherian ring, $\mathfrak{a} \subset A$ an ideal and \hat{A} the \mathfrak{a} -adic completion. Prove that $\hat{\mathfrak{a}}^k \simeq \mathfrak{a}^k \hat{A}$ for all $k \geq 0$. Deduce that $\operatorname{gr}_{\mathfrak{a}}(A) \simeq \operatorname{gr}_{\hat{\mathfrak{a}}}(\hat{A})$.

Exercise 41. (3 points) Completion and localization/quotient.

Let A be a Noetherian ring, $S \subset A$ a multiplicative system and $\mathfrak{a} \subset A$ an ideal. For an A-module \widehat{M} denote by \widehat{M} the \mathfrak{a} -adic completion. Is it true that for \widehat{M} finitely generated $S^{-1}\widehat{M} \simeq \widehat{S^{-1}M}$? Let $\mathfrak{b} \subset A$ be another ideal. Is it true that $\widehat{A}/\widehat{\mathfrak{b}}\widehat{A} \simeq \widehat{(A/\mathfrak{b})}$?

Exercise 42. (4 points) Flatness of the Frobenius.

Recall the notion of the relative Frobenius $F_{X/S}$: Assume X is finite type over \mathbb{F}_q , $q=p^n$, and let $\pi\colon X\to S\coloneqq \operatorname{Spec}(\mathbb{F}_q)$ be the structure morphism. Then the relative Frobenius $F_{X/S}\colon X\to X^{(p)}\coloneqq X\times_{S,F}S$ (which is an S-morphism) is obtained from the universal property of the fibre product (with $F\colon S\to S$ given by the Frobenius $x\mapsto x^p$) applied to π and the absolute Frobenius $F\colon X\to X$.

Assume that X is smooth over \mathbb{F}_q and show that then $F_{X/S} \colon X \to X^{(p)}$ is flat at all rational points of X.

Exercise 43. (2 points) Complete local rings of singularities.

Consider completions of the rings k[x,y]/(xy) and $k[x,y]/(y^2-x^4)$ at the maximal ideal (x,y) which corresponds to the singular points. Are these completions isomorphic?

Exercise 44. (3 points) Complete local rings are Henselian.

Let A be a local ring, \mathfrak{m} its maximal ideal. Assume that A is \mathfrak{m} -adically complete. Let $f \in A[x]$ be a monic polynomial of degree n, and denote by $\bar{f} \in (A/\mathfrak{m})[x]$ its reduction mod \mathfrak{m} . Assume that there exist coprime monic polynomials $\bar{g}, \bar{h} \in (A/\mathfrak{m})[x]$ of degrees r, n-r with $\bar{f} = \bar{g}\bar{h}$. Prove that one can find $g, h \in A[x]$, such that $g \equiv \bar{g} \pmod{\mathfrak{m}}, h \equiv \bar{h} \pmod{\mathfrak{m}}$ and f = gh.

Due Monday 20 June, 2016.