Intersection theory and pure motives, Exercises – Week 13

Exercise 56. Finite-dimensionality of homological motives.

In class we have seen that the sign conjecture $C^+(X)$ for a smooth projective variety X implies that its homological motive $\mathfrak{h}(X)$ in $\mathrm{Mot}_H(k)$ is finite-dimensional in the sense of Kimura–O'Sullivan. Now, assume that the sign conjecture $C^+(X)$ holds for all $X \in \mathrm{SmProj}(k)$ and deduce from it that every $M \in \mathrm{Mot}_H(k)$ is finite-dimensional.

Exercise 57. Natural bundles on the Jacobian.

Let C be a smooth projective curve with Poincaré bundle \mathcal{P} on $J(C) \times C$. As in class, let $E_n := p_*(\mathcal{P} \otimes q^*\mathcal{O}(nx_0))$ for some distinguished point $x_0 \in C(k)$. Recall that for $n \geq 2g(C) - 1$ the sheaf E_n is locally free of rank n + 1 - g(C).

- (i) Prove that E_n is not a trivial locally free sheaf, i.e. $E_n \ncong \mathcal{O}_{J(C)}^{\oplus n+1-g(C)}$.
- (ii) Show that $c(E_{n+1}) = c(E_n), n \ge 2g(C) 1.$

Exercise 58. Finite-dimensionality of the universal hypersurface.

Let $\mathcal{X} \to |\mathcal{O}_{\mathbb{P}^n}(d)|$ be the universal hypersurface of degree d in \mathbb{P}^n . Show that $\mathfrak{h}(\mathcal{X})$ is finite-dimensional in the sense of Kimura–O'Sullivan.

Exercise 59. Finite-dimensionality under base change.

Let $M \in \text{Mot}(k)$ and let K/k be a field extension. Prove that M in Mot(k) is even/odd finite-dimensional in the sense of Kimura–O'Sullivan if and only if $M \otimes K$ in Mot(K) is. (Here, for M = (X, p, m) one defines $M \otimes K := (X \times_k K, p \times 1_K, m)$.)

Exercise 60. Atiyah flop.

Let V_1, V_2 be two-dimensional vector spaces. On $\mathbb{P}(V_1)$ consider the vector bundle $\mathcal{E}_1 = \mathcal{O} \oplus (\mathcal{O}(-1) \otimes V_2)$ and let $p_1 \colon \mathbb{P}(\mathcal{E}_1) \to \mathbb{P}(V_1)$; on $\mathbb{P}(V_2)$ consider the vector bundle $\mathcal{E}_2 = \mathcal{O} \oplus (\mathcal{O}(-1) \otimes V_1)$ and let $p_2 \colon \mathbb{P}(\mathcal{E}_2) \to \mathbb{P}(V_2)$. On $\mathbb{P}(V_1) \times \mathbb{P}(V_2)$ consider $\mathcal{F} = \mathcal{O} \oplus \mathcal{O}(-1, -1)$ and let $q \colon \mathbb{P}(\mathcal{F}) \to \mathbb{P}(V_1) \times \mathbb{P}(V_2)$. Denote the two projections from $\mathbb{P}(V_1) \times \mathbb{P}(V_2)$ to its two factors by π_1, π_2 . Observe that there are natural inclusions of vector bundles $\mathcal{F} \hookrightarrow \pi_1^* \mathcal{E}_1$ and $\mathcal{F} \hookrightarrow \pi_2^* \mathcal{E}_2$. Composing the pull-backs of these inclusions by q with $\mathcal{O}_q(-1) \hookrightarrow q^* \mathcal{F}$ we embed $\mathcal{O}_q(-1)$ into $q^* \pi_1^* \mathcal{E}_1$ and $q^* \pi_2^* \mathcal{E}_2$. This defines two maps $\varepsilon_1, \varepsilon_2$ that fit into the following commutative diagram:

$$\mathbb{P}(\mathcal{E}_1) \stackrel{\varepsilon_1}{\longleftarrow} \mathbb{P}(\mathcal{F}) \stackrel{\varepsilon_2}{\longrightarrow} \mathbb{P}(\mathcal{E}_2) \\
\downarrow^{p_1} \qquad \qquad \downarrow^{q} \qquad \qquad \downarrow^{p_2} \\
\mathbb{P}(V_1) \stackrel{\pi_1}{\longleftarrow} \mathbb{P}(V_1) \times \mathbb{P}(V_2) \stackrel{\pi_2}{\longrightarrow} \mathbb{P}(V_2)$$

Denote by s_1 , s_2 and t the sections of p_1 , p_2 and q that correspond to the trivial summands of \mathcal{E}_1 , \mathcal{E}_2 and \mathcal{F} respectively. Prove that ε_1 is the blow-up of $\mathbb{P}(\mathcal{E}_1)$ in the image of s_1 , and analogous statement for ε_2 . The composition $\varepsilon_2 \circ \varepsilon_1^{-1}$ is a rational map from $\mathbb{P}(\mathcal{E}_1)$ to $\mathbb{P}(\mathcal{E}_2)$ which is called the Atiyah flop. Describe the induced action on the Chow ring (i.e. the morphism $\varepsilon_{2*} \circ \varepsilon_1^*$). Consider the morphism from $\mathbb{P}(\mathcal{E}_1)$ given by the full linear system $|\mathcal{O}_{p_1}(1)|$. Describe the image and the exceptional locus of this morphism. Analogous question for $\mathbb{P}(\mathcal{E}_2)$ and $\mathbb{P}(\mathcal{F})$. Observe that this construction works equally well when V_1 and V_2 have arbitrary dimensions.