Intersection theory and pure motives, Exercises – Week 5

Exercise 18. Chern classes of dual bundles.

Let E be a locally free sheaf on X. Assume that there exists a perfect pairing $E \otimes E \to \mathcal{O}_X$ (which could be symmetric or skew-symmetric or non of the two). Show that $2c_i(E) = 0$ for i odd. Find an example where the 2 cannot be omitted.

Exercise 19. Chern classes of subvarieties.

Use the normal bundle sequence to compute the total Chern classes of the following bundles:

- 1. The normal bundle $\mathcal{N}_{\mathbb{P}^n/\mathbb{P}^m}$ of the *d*-fold Veronese embedding $\mathbb{P}^n \hookrightarrow \mathbb{P}^m$, $m = \binom{n+d}{d} 1$.
- 2. The tangent bundle \mathcal{T}_G of the Grassmannian G = G(2,4).

Exercise 20. Zero sets of regular sections.

Let E be a locally free sheaf of rank r and $s \in H^0(X, E)$ a regular section with scheme of zeros $Z = Z(s) \subset X$ (which is then pure of codimension r).

- 1. Show that $c_r(E) = [Z]$ in CH(X). See [F, Ex. 3.2.16].
- 2. Recall that there exists a locally free resolution $0 \to \bigwedge^r E^* \to \cdots \to E^* \to \mathcal{O}_X \to \mathcal{O}_Z \to 0$ (Koszul resolution). In view of the additivity of the Chern character it makes sense to define $\operatorname{ch}(\mathcal{O}_Z) := \sum (-1)^p \operatorname{ch}(\bigwedge^p E^*)$. Show that $[Z] = \operatorname{ch}(\mathcal{O}_Z)\operatorname{td}(E)$ in $\operatorname{CH}(X) \otimes \mathbb{Q}$. See $[F, \operatorname{Ex. } 3.2.5]$.
- 3. One can similarly define the total Chern class $c(\mathcal{O}_Z)$ as $\prod_p c(\bigwedge^p E^*)^{(-1)^p}$. Prove that $[Z] = (-1)^{r-1}(1/(r-1)!)c_r(\mathcal{O}_Z)$.

Exercise 21. Zero cycles on subvarieties.

Let $Y \subset X$ be a closed subvariety of a variety X over k. The induced map $\operatorname{CH}_0(Y) \to \operatorname{CH}_0(X)$ is universally surjective if for all field extensions K/k the induced map $\operatorname{CH}_0(Y_K) \to \operatorname{CH}_0(X_K)$ is surjective (cf. Exercise 14).

- (i) For $k = \bar{k}$ consider $X = \mathbb{P}^n$ and $\emptyset \neq Y \subset X$ any subvariety. Show that $\operatorname{CH}_0(Y) \to \operatorname{CH}_0(X)$ is universally surjective.
- (ii) Show that a smooth projective curve C of genus g(C) > 0 does not contain a proper subvariety $Y \subset C$ with $\operatorname{CH}_0(Y) \to \operatorname{CH}_0(X)$ universally surjective. (But there are examples for which nevertheless $\operatorname{CH}_0(Y) \otimes \mathbb{Q} \to \operatorname{CH}_0(X) \otimes \mathbb{Q}$ is surjective.) What happens for g(C) = 0?