Intersection theory and pure motives, Exercises – Week 6

Exercise 22. Pseudo-abelian hull.

Let \mathcal{A} be an additive category, \mathcal{B} a pseudo-abelian category and $\Phi \colon \mathcal{A} \to \mathcal{B}$ a fully faithful functor such that every object in \mathcal{B} is a direct summand of an object in \mathcal{A} (via Φ). Show that then \mathcal{B} is equivalent to the pseudo-abelian hull $\tilde{\mathcal{A}}$ of \mathcal{A} .

Let $(A, p), (B, \mathrm{id})$ be objects in $\tilde{\mathcal{A}}$ and $\varphi \colon (A, p) \to (B, \mathrm{id})$ and $\psi \colon (B, \mathrm{id}) \to (A, p)$ be morphisms in $\tilde{\mathcal{A}}$ with $\varphi \circ \psi = \mathrm{id}_{(B, \mathrm{id})}$. Show that $p - \psi \circ \varphi$ is a projector for A and that $(A, p) \cong (B, \mathrm{id}) \oplus (A, p - \psi \circ \varphi)$.

Exercise 23. Top degree motive.

Recall the definition of $\mathfrak{h}^{2d}(X) \in \operatorname{Mot}(k)$ for a smooth projective variety X of dimension d and that it a priori depends on the choice of a closed point $x \in X$. Prove that

$$\mathfrak{h}^{2d}(X) \cong (k, \mathrm{id}, -d) \cong \mathbb{L}^d,$$

which in particular shows that $\mathfrak{h}^{2d}(X)$ does not depend on x.

Exercise 24. Composition in Mot(k).

Recall that $\operatorname{Mor}_{\operatorname{Mot}}((X,p,m),(Y,q,n)) = q\operatorname{Corr}^{n-m}(X,Y)p$ and convince yourself that convolution defines a \mathbb{Q} -linear associative composition on $\operatorname{Mot}(k)$.

Exercise 25. Examples of Schubert cycles.

We study some classical cycles on the Grassmannian $G(2,4) = \mathbb{G}(1,3)$ of planes in k^4 assuming $k = \bar{k}$. For this fix (generic) subspaces $\ell_0, H_0, W_0 \subset k^4$ of dimension 1, 2, and 3, respectively. Study the subschemes (with the induced reduced structure) $\Sigma_{2,1} := \{H \mid \ell_0 \subset H \subset W_0\}, \ \Sigma_{1,0} := \{H \mid H \cap H_0 \neq 0\}, \ \text{and} \ \Sigma_{1,1} := \{H \mid H \subset W_0\} \ \text{and their classes}$ $\sigma_{i,j} := [\Sigma_{i,j}] \in \mathrm{CH}^*(G(2,4))$. Prove that $[\sigma_{i,j}] \in \mathrm{CH}^{i+j}$ and for the intersection products one finds $\sigma_{1,0}\sigma_{1,1} = \sigma_{2,1}$ and $\sigma_{1,0}\sigma_{2,1} = [\mathrm{pt}]$.

Exercise 26. Grothendieck/Hirzebruch-Riemann-Roch formula.

- (i) Use the Euler sequence to compute all Chern classes of $\mathcal{T}_{\mathbb{P}^n}$ and the Hirzebruch–Riemann–Roch formula to compute $\chi(\mathbb{P}^n, \Omega^k_{\mathbb{P}^n})$.
- (ii) The Mukai vector v(E) of a coherent sheaf E on a smooth variety X is defined as $v(E) = \operatorname{ch}(E) \sqrt{\operatorname{td}(\mathcal{T}_X)}$ (where $\sqrt{\operatorname{td}(\mathcal{T}_X)}$ is defined formally by using that $\operatorname{td} = 1 + \cdots$). Show that the Mukai vector of the structure sheaf of the diagonal $\Delta \subset X \times X$ satisfies $v(\mathcal{O}_{\Delta}) = [\Delta]$.