Intersection theory and pure motives, Exercises – Week 9

Exercise 37. Cohomology of decomposable motives.

Fix a Weil cohomology theory H^* for k with coefficient field K and assume $\mathfrak{h}(X) \cong \bigoplus_{i=1}^n \mathbb{L}^{\otimes n_i}$ in $\mathrm{Mot}(k)$. Show that $H^{2i+1}(X) = 0$ for all i and $\sum \dim_K H^i(X) = n$.

Exercise 38. Galois action on top cohomology.

Let $k = \mathbb{F}_q$, $q = p^n$, and H^* a Weil cohomology theory. Show that for any geometrically integral $X \in \text{SmProj}(k)$ the action of the Frobenius F^n on $H^{2d}(X)$ is given by $q^d \cdot \text{id}$.

Exercise 39. Adequate equivalence relation for (some) products of curves.

Consider the adequate equivalence relations introduced in class (rational, numerical, homological, smash nilpotent) for the case of product of curves $C_1 \times C_2$. Start with $C \times \mathbb{P}^1$ and the square of an elliptic curve $E \times E$. In particular, in which cases do rational and numerical equivalence coincide? For which cases can you show that numerical and homological equivalence coincide?

Exercise 40. Chords of twisted cubics.

Let C, C' be two twisted cubics in \mathbb{P}^3 in general position (recall that a twisted cubic is the image of degree 3 Veronese embedding $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$). A *chord* of C is a line in \mathbb{P}^3 that meets C at two points. Taking for granted that the Chow ring of the Grassmannian G(2,4) is generated by the cycles $\sigma_{1,0}$ and $\sigma_{1,1}$ (see exercise 26), compute the number of common chords of C and C'.

Exercise 41. Cohomology of curves.

Let C be a smooth projective curve of genus g. For an arbitrary Weil cohomology theory H^* , what is the dimension of $H^1(C)$?

Due Wednesday 21 December, 2016.